
International Journal of Scientific Research and Innovation ISSN 2455-0140
Volume 1, Issue 1, July 2015 IJSRI 1002

IMPLEMENTATION AND COMPARATIVE EVALUATION OF ICA
WITH PIPELINED FASTICA FOR REAL-TIME BLIND SOURCE

SEPARATION
K.R.Siva Bharathi Dr.X.Felix Joseph

Assistant Professor Assistant Professor
Sri Krishna College of Engineering and Technology, Noorul Islam University,
Coimbatore Kumaracoil
Email id: sivabharathi@skcet.ac.in Email id: felix.jsph@gmail.com

Abstract—Blind source separation of independent source signals
from their mixtures is a common problem in real world multi-
sensor applications. Independent component analysis is
commonly reported for Blind Signal Separation (BSS).
Independent Component Analysis (ICA) supports the normal
sampling rate used in automatic speech recognition systems,
which is incompatible to the systems with high sampling rates.
So we propose the FastICA algorithm, which is a common
offline method to identify artifacts and other interferences in the
mixtures. FastICA becomes efficient for providing real time
BSS when implemented in a Field Programmable Gate Array
(FPGA). Added advantage of number precision is increased by
the introduction of Floating point arithmetic. Increased
sampling rate is provided by hand coding the FastICA. Using
HDL language like VHDL facilitates the development of custom
operators without significantly impacting the operator
performance.

Index terms--- Blind Source Separation (BSS), Fast Independent
Component Analysis (FastICA), Field Programmable Gate
Array (FPGA), Floating point (FP), Hardware Description
Language (HDL)

I. INTRODUCTION

Biomedical signals such as electroencephalogram (EEG), magneto
encephalography (MEG), and electrocardiogram (ECG) are
generally measured from clinical sensors or instruments; however,
the measured signals are polluted by the artifacts and other unknown
noise signals, e.g., eye movements,muscle noise, and power noise
from instruments[1]. This problem can be solved by independent
component analysis (ICA) algorithm, which identifies artifacts or
disturbances and extracts artifacts from the measured signals. The
processing described previously is also named blind source
separation (BSS)[2]. The meaning of “blind” is that both the original
sources and the way the sources were mixed are all unknown, and
only mixed signals or mixtures can be measured and observed.
Many studies have been developed on the real time implementation
of ICA [7]. These studies aimed at implementing ICA on FPGA‟s
[5] and pilchard boards and even combined it with adaptive noise
cancellation techniques using adaptive filters [9].Independent
Component Neural Networks (ICNN) [8] is also implemented in
FPGA‟s to separate the mixtures. The main drawbacks of these
existing methods are poor performance due to the low sampling
rates [3] and lack of pipelined architecture and the result is less
accurate due to the use of fixed point arithmetic units [10].

ICA recovers independent source signals from their mixed
signals by finding a lineartransformation thatmaximizes the mutual
independence of mixtures. To improve the efficiency of ICA,
FastICA algorithm is proposed. FastICA measures non-

Gaussianityusing kurtosis to find the independent sources from their
mixtures. In order to realize the real-time signal processing, the
FastICA algorithm can be implemented on a field-programmable
gate array (FPGA) to speed up the computation involving vector
multiplications, matrix multiplications, and matrix inverses.

In this paper, the hardware FastICA is implemented by
hand coding HDL code. Though there is software that translates the
high-level languages such as C code, MATLAB, and even Simulink
into HDL code, hand coding gives the implementation not only
better performance but also less consumption of gate array in the
FPGA. The proposed hardware FastICA implemented by hand
coding provides high sampling rate up to 192 kHz. In addition, the
numbers precision in hardware FastICA is increased by
implementing the hardware floating-point(FP) arithmetic units. The
FP arithmetic allows numbers to be represented in a wider range
than fixed-point arithmetic [10], [11]. Finally, the ICA algorithm
and pipelined architecture-based hardware FastICA is compared in
this paper by means of simulation. The implementation of the
algorithms is currently going on and the results will be analyzed
soon.

II. ICA ALGORITHM

Fig.1. BSS using ICAalgorithm

Assume that the mixed signal matrix is defined as

𝑋 = 𝐴𝑆……………… (1)
Where 𝑋 = (𝗑1, 𝗑2, … . . 𝗑𝑛)𝑇 and 𝑆 = (𝑠1, 𝑠2, … … 𝑠𝑛)𝑇 are the
signal arrays, which have n observed mixed signals n and unknown
independent sources, respectively, and A is a full-rank n by n
mixing matrix. The goal ofICA algorithm isto recoverthe unknown
source by estimating the mixingmatrix. Fig. 1is the illustration of
the ICA processing. x and s are expressed as,

𝗑 = [𝗑 (1), 𝗑 (2) … 𝗑 (i − 1), 𝗑 (i)] (2)
𝑠 = [𝑠 (1), 𝑠 (2) … 𝑠 (i − 1), 𝑠 (i)] (3

Where i=1, 2 …m and m indicates the number of time samples.

Unknow
S-esnt

source
signal

S Unknow X
-est

S_est
n

mixing

ICA
Algorith

m

International Journal of
Volume

A) PREPROCESS OF ICA
In order to reduce the complexity of the ICA algorithm

calculation, it is necessary to preprocess the mixed signal matrix
A popular preprocessing method is the principal component analysis
(PCA) algorithm, which finds a linear transformation and translates
correlative matrix X into Z. Then, components
uncorrelated to each other.

The first step of PCA algorithm is called centering, which
calculates the mean from the mixed signal x, and then subtracts the
mean from x. The processing of centering is defined

𝗑 (i) = 𝗑(i) − 𝐸{𝗑(𝑚)} (4)
Where i=1, 2, 3…….. m and m indicates the number
samples. After centering, X becomes a zero mean matrix.

The second step of PCA algorithm is called
The method of whitening utilizes eigenvalue decomposition (EVD)
defined as
𝐸 {𝑋𝑋𝑇} = 𝐶𝗑 = 𝐸𝐷𝐸𝑇 …..………..(5)
Where Cx is the covariance matrix of X, E=(e1,e
orthogonal matrix of eigenvectors of Cx, and D=diag(λ
λn,) is the diagonal matrix of eigenvalues of Cx.

The whitening process can be described as
𝑍 = 𝑃𝑋……………(6)

Where P is the whitening matrix and Z is a new matrix
will be defined as,

P = D-1/2*ET

It is easy to show that the elements in Z are uncorrelated
whitening process because,
E {ZZT}=PE {XXT} PT

1/2ETEDETED-1/2=I (8)
After preprocessing, the mixing matrix A transforms into a new one.
It can be received from,
𝑍 = 𝑃𝑋 = 𝑃𝐴𝑆 = Ã𝑆 (9)
The new mixing matrix is orthogonal. This means that the ICA
problem of finding the full rank matrix is simplified
estimation of the orthogonal mixing matrix.

III. FAST ICA ALGORITHM

TheFastICA algorithm uses the preprocessing
centering and whitening. This makes use of an additional process
called Kurtosis.Based on the central limit theorem,
of the sum of independent random variables tends to be closer to a
Gaussian. Thus, measurement of non-Gaussianity is used to find
independent components. Traditional higher order
kurtosis or the named fourth-order cumulant to
Gaussianity. The kurtosis of a zero-mean random
defined by,
𝐾𝑢𝑟𝑡{𝑦} = 𝐸 {𝑦4} − 3(𝐸 {𝑦2}) 2…………..(10)
Where E {y4} is the fourth moment of y and E {y
moment of y. for a Gaussian random variable y,
E{y2})2, so that the kurtosis is zero for a Gaussian random variable.
If it is a non-Gaussian random variable, its kurtosis is either positive
or negative. Therefore, non-Gaussianity is measured by the absolute
value of kurtosis.

IV.IMPLEMENTATION:

of Scientific Research and Innovation ISSN 2455
Volume 1, Issue 1, July 2015 IJSRI 1007

In order to reduce the complexity of the ICA algorithm
calculation, it is necessary to preprocess the mixed signal matrix X.
A popular preprocessing method is the principal component analysis
(PCA) algorithm, which finds a linear transformation and translates

components in Z become

The first step of PCA algorithm is called centering, which
calculates the mean from the mixed signal x, and then subtracts the

 as
(4)
number of time

matrix.
of PCA algorithm is called whitening.

The method of whitening utilizes eigenvalue decomposition (EVD)

,e2,……en) is the
D=diag(λ1,λ2,λ3,………..

as

matrix that is white

................ (7)
uncorrelated after

 =D-

transforms into a new one.

The new mixing matrix is orthogonal. This means that the ICA
simplified to the

preprocessing steps

centering and whitening. This makes use of an additional process
theorem, the distribution

um of independent random variables tends to be closer to a
Gaussianity is used to find

order statistics uses
to measure non-

random variable y is

E {y2} is the second

,E{y4} equals 3(
, so that the kurtosis is zero for a Gaussian random variable.

Gaussian random variable, its kurtosis is either positive
Gaussianity is measured by the absolute

A. IMPLEMENTATION OF FP ARITHMETIC UNITS:

Many scientific problems require FP arithmetic with high
precision in their calculations. Moreover, a large dynamic range of
numbers is necessary for signal processing. FP arithmetic has the
ability to automatically scale numbers and allows numbers to be
represented in a wider range than
proposed 32-bit FP implementation includes adder, subtractor,
multiplier, divider, and square rooter. Fig. 2 has the format of IEEE
745 standard 32-bit FP numbers. In it,s is the sign bit used to specify
the sign of the FP number, is the 8-bit quantity called the exponent
field, and has 23 bits used to store the
FP number. The leading one in the mantissa do
representation; therefore, the leading
The FP value of Fp is computed by,

𝐹𝑝 = (−1)^5(1. 𝑓)

Sign Bias exponent fraction

Sef

1-bits 8-bits 23-
Fig.2.IEEE single precision

B. IMPLEMENTATION OF FASTICA
FPGA technology is very suitable to implement the digital signal
processing algorithm for quickly
hardware. For real-time implementation of the FastICA algorithm, it
requires high volume of mathematical
time interval. Currently, most FPGAs
multipliers and memory blocks,
suchapplication.In this paper, the hardware FastICA is implemented
by hand coding VHSIC hardware description language (VHDL). To
increase the feasibility in the implementation of higher dimensions
of FastICA, the design of implementation
the concept of modules. The
implementing FastICA is illustrated below:

S

Fig.3. Block diagram of FastICA

In order to store quantity of data, the on
FPGA is used when the FastICA
memory is divided into four parts: memory
3, and memory-4. Memory-1 is used to store the measuredmixed
signal X from analog-to-digital circuit module. Memory
centered data. Furthermore, memory
store the whitened data Z and the estimated independent component
S-est, respectively.

Unknown
mixing
matrix

Unknown
source
signal

ISSN 2455-0140

O/

ARITHMETIC UNITS:
Many scientific problems require FP arithmetic with high

precision in their calculations. Moreover, a large dynamic range of
numbers is necessary for signal processing. FP arithmetic has the

cale numbers and allows numbers to be
than fixed-point arithmetic. The

bit FP implementation includes adder, subtractor,
multiplier, divider, and square rooter. Fig. 2 has the format of IEEE

bit FP numbers. In it,s is the sign bit used to specify
bit quantity called the exponent
the binary representation of the

FP number. The leading one in the mantissa does not appear in the
 one is implicit.

 * 2^(𝑒 − 127)
fraction

-bits
precision FP format

FASTICA ALGORITHMS:
FPGA technology is very suitable to implement the digital signal

 verifying the algorithm in
time implementation of the FastICA algorithm, it

mathematical operations in a very short
FPGAs have on-chip hardware

blocks, andare suitable for
suchapplication.In this paper, the hardware FastICA is implemented
by hand coding VHSIC hardware description language (VHDL). To
increase the feasibility in the implementation of higher dimensions

implementation of FastICA is based on
 general Block diagram for

below:

FastICA implementation

In order to store quantity of data, the on-chip memory in
FastICA algorithm is processed. The

memory is divided into four parts: memory-1, memory-2, memory-
1 is used to store the measuredmixed

digital circuit module. Memory-2 stores the
centered data. Furthermore, memory-3 and memory-4 are used to

and the estimated independent component

X
FastICA
algorith
m p

FP arithmetic

International Journal of Scientific Research and Innovation ISSN 2455-0140
Volume 1, Issue 1, July 2015 IJSRI 1007

Four blocks are needed to implement FastICA: centering,
whitening, kurtosis, and FastICA controller. The detailed
implementation of each block will be discussed as follows:
.1) Centering:The process of centering is to subtract the mixed
signal means µ1 and µ2 from x1 and x2, respectively.
First, the mixed signals x1 and x2 will be read out from the memory-
1_A and memory-1_B, respectively, and then it will accumulate the
element of x one by one. After getting the summation of, will be
obtained by dividing the summation by 3000. In order to speed up
the processing, use multiplication operation (multiply by 1/3000)
instead of the division, where 3000 is the number of time samples.
Second, subtract the mean from the data in memory-1 forachieving
centering and then save the results into memory-2.
2) Whitening:The first step of whitening is to find the whitening
matrix P, given by D-1/2*ET, where 𝐸 = (𝑒1, 𝑒2, … … 𝑒𝑛) is the
orthogonal matrix of eigenvectors of Cx, and
𝐷 = 𝑑i𝑎𝑔(1, 2, 3, … … … . . 𝑛,) is the diagonal matrix of
eigenvalues of Cx. Covariance matrix, 𝐶𝗑 = 𝐸{𝑋𝑋𝑇} is a 2 x2
matrix. It takes three multipliers to implement the calculation of
XXT. Multiplier-1 is used for x1 * x1, multiplier-2 is used for x1 * x2,
and multiplier-3 is used for x1 * x2, where,

transformation are all implemented. The matrix P is thus obtained
by multiplying D-1/2 by ET. Finally, the white data could be obtained
after multiplyingby P by X.. Then it is stored into memory-3. The
block diagram of whitening is presented in Fig. 4.

3) Kurtosis:The calculation of separating vector in the following
equation has been already described in the previous section and it is
expressed as,
w (𝑘) = 𝐸 {𝑍 (𝑍𝑇w (𝑘 − 1))3} − 3w (𝑘 − 1)……(13)

The calculation of𝑍 (𝑍𝑇w (𝑘 − 1)) 3 is first implemented
and the corresponding concept is presented in Fig. 5, where
Memory-3_A and memory-3_B store the white data z1and z2
respectively. The parallel hardware in Fig. 5 must perform 3000
times and the operation is controlled by input “pre_w(k) Cal.
Control.” The hardware operation could be formulated as,

𝑃𝑟𝑒_w (𝑘) = ∑ (z(j) * (z(j)w(𝑘 − 1))3) … (14)
Where 𝑃𝑟𝑒_w (𝑘)iscalculation result of Z(ZTw (k-1)) 3.

To save the logic element of FPGA, sequence hardware
design is adopted. The remaining calculations will sequentially

(X) = 𝑥1 𝑥1(1), 𝑥1(2) ⋯ 𝑥1(3000) share the FP arithmetic components until the calculation of is
= (

()
) finished.

𝑥2 𝑥2 1 , 𝑥2(2) ⋯ 𝑥2(3000)
Because x1 * x2 equals x2 * x1, it only needs to implement one of
them in order to save the hardwareresources. The method described
previously is a parallel operation. In other words, it performs three
multiplications at the same time after reading two words out of data
x1 and x2 and from memory-2_A and memory- 2_B, respectively.
After 3000 accumulation and parallel multiplication operations, Cx
thus can be derived by multiplying summation by 1/3000. The
hardware operation described previously can be formulated as,

𝐶𝑥 = (
𝐶𝑥00 𝐶𝑥01

)

𝐶𝑥10 𝐶𝑥11

𝐶𝗑 − 00 = (∑𝗑1 (j) * 𝗑1(j)) * 0. 00033 (10)

𝐶𝗑 − 01 = 𝐶𝗑 − 10 = (∑𝗑1(j) * 𝗑2(j))

* 0. 000333 …………… (11)

𝐶𝗑 − 11 = (∑𝗑2 (j) * 𝗑2(j)) * 0. 00033 (12)

Each centering result will be saved into memory-2 and
will be used for calculating simultaneously. The implementation
block diagram is presented in fig.3. When the calculation of Cx has
been carried out, the next step is to calculate the eigenvalues λ1 and
λ2 of Cxby the equation aλ2 + bλ + c = 0. First, it simultaneously
utilizesan adder to calculate the parameter b = -(C00 + C11) and two
multipliers associated with a subtractor to calculate the parameter
c=det(Cx). The solutions λ1 and λ2 are both positive because Cx is a
positive semi-definite. Practically, is positive definite for almost all
natural data. Because the value of „a‟ equals unity, the operation of
just utilizes left shifting operation on the c. Using a square rooter
and a matrix inverse circuit, we can calculate D-1/2 easily. The
algorithms for finding eigenvectors of ET, normalization, and matrix

4) FastICA Controller:The works of FastICA controller are as
follows. 1) Drive centering, whitening, and kurtosis blocks to be
sequentially active, and control the memory-access cycle when each
FastICA block requires accessing the data from memory. 2) When
processing kurtosis block, FastICA controller will setup the initial
value w (0), and then it compares the kurtosis result w (k) with w (k-
1) for judging whether the “fixed-point iteration” in FastICA
algorithm has converged.

Fig.4. Block diagram implementation of centering and whitening.

International Journal of Scientific Research and Innovation ISSN 2455-0140
Volume 1, Issue 1, July 2015 IJSRI 1007

Fig.5. Block diagram implementation of the equation :(∑𝑍(j) *
(𝑍(j))𝑤(𝑘 − 1))3)

Fig.6.Illustration of proposed pipeline flow of pipelined FastICA

C. IMPLEMENTATION OF PIPELINED FASTICA
ARCHITECTURE
This requires two sub blocks as explained below.
1) Overall Pipelined FastICA:In order to implement the pipeline
architecture, the signal processing flow is divided into three sub
blocks: analog-to-digital converter (ADC) control, FastICA
calculation, and digital-to-analog converter (DAC) control. Besides
three sub blocks, pipeline controller is needed to control the
processing sequence of each sub block in pipeline architecture. The
overall concept of pipelined FastICA is illustrated in Fig. 5. The
process starts at processing cycle 1:

After first two cycles of processing, three sub-blocks will
operate simultaneously in the same processing cycle. The estimated
independent analog components output continuously after
processing cycle 3. Utilizing the pipeline architecture, the
implementation of FastICA achieves real-time continuous signal
processing.

2) ADC and DAC Control Sub-blocks:The main concern is when

the pipeline processing is the memory-accessing conflict problem.
As shown in Fig. 5, at processing cycle 2, FastICA processing sub-
block reads the data-1 out from memory-1 for processing, however,
at the same time, ADC control sub-block has to store the sampling

data, data-2, into memory-1. The same conflict happens at
processing cycle 3. When FastICA sub-block saves the calculated
results into memory-4, the DAC control sub-block has to read out
the data from memory-4 for DAC operation in the same processing
cycle. Therefore, memory-1 pair and memory-4 pair are proposed to
avoid the memory conflict problem.

V. EXPERIMENTAL RESULTS:

In the simulation, sine and triangle waves generated from

MATLAB are taken as source signals. Then, the mixed signals are
produced by multiplying the random mixing matrix and the
generated source signals. This mixing signal is pre-processed and
the further processes are done using hand coding VHDL and the
independent source signal is obtained at the output. The simulation
results are illustrated below: Fig.6.indicates the mixed signal
generated using MATLAB. Fig.7. represents the pre-processed
signal that is further processed using PCA. Fig.8. indicates the
obtained independent signal using hand coding VHDL.

Fig.6. Generated mixed signal

International Journal of Scientific Research and Innovation ISSN 2455-0140
Volume 1, Issue 1, July 2015 IJSRI 1007

Fig.7. Pre-processed signal

Fig.8. Processed signal using hand coding

The implementation will be done further and the results
will be analyzed and comparative evaluation will be done with ICA.

VI. CONCLUSION:
This paper compares the performance of the ICA

algorithm and the FastICA algorithm for real time implemented in
FPGA. The FastICA algorithm proves the real time implementation
of Blind Source Separation more feasible. ICA makes use of 12
KHz sampling with 12-bit A/D conversion, commonly used in
automatic speech recognition system. With higher sampling rates,
ICA require more computing power and memory bandwidth with
given convolutive mixing channels, whereas the FastICA pipelined
architecture allows high speed real time signal processing of
FastICA with high sampling rate of up to 192 KHz by hand coding
it in VHDL. Moreover , the FP arithmetic is implemented in the
pipelined FPGA based FastICA to provide better precision and high
dynamic performance. In future, the prototype system with FastICA
algorithm could work without the need of a personal computer. Both
simulation and experiment demonstrate that the proposed FPGA
based FastICA system is capable of real-time signal processing such
as speech signal enhancement and fetal heart rate (FHR) monitoring.

REFERENCES:
[1] Kuo-Kai shyu, Ming-Huan Lee, Yu-Te Wu and Po-Lei Lee:
“Implementation of pipelined FastICA on FPGA for Real-Time
Blind Source Separation,”IEEE Trans. On Neural Networks,
Vol.19, no.6, June 2008.
[2] C. M. Kim, H. M. Park, T. Kim, Y. K. Choi, and S. Y. Lee,
“FPGA implementation of ICA algorithm for blind signal separation
and adaptive noise canceling,” IEEE Trans. Neural Netw., vol. 14,
no. 5, pp. 1038–1046, Sep. 2003.
[3] J. T. Chien and B. C. Chen, “A new independent component
analysis for speech recognition and separation,” IEEE Trans.
Speech AudioProcess., vol. 14, no. 4, pp. 1245–1254, Jul. 2006.
[4] L. Tian, D. Erdogmus, A. Adami, M. Pavel, and S. Mathan,
“Salient EEG channel selection in brain computer interfaces by
mutual information maximization,” in Proc. IEEE Annu. Int. Conf.
Eng. Med. Biol.Soc., 2005, pp. 7064–7067.
[5] A. Nordin, C. Hsu, and H. Szu, “Design of FPGA ICA for

hyperspectral image processing,” in Proc. SPIE Signal Image
Process, Mar. 2001, vol. 4391, pp. 444–454.
[6] H. Du and H. Qi, “An FPGA implementation of parallel ICA for

dimensionality reduction in hyperspectral images,” in Proc. IEEE
Int. Symp.Geosci. Remote Sens., Sep. 2004, vol. 5, pp. 3257–3260.
[7] C. Charoensak and F. Sattar, “A single-chip FPGA design for

real-time ICA-based blind source separation algorithm,” in Proc.
IEEE Int. Symp.Circuits Syst., May 2005, vol. 6, pp. 5822–5825.
[8] A. R. Omondi and J. C. Rajapakse, “Neural networks in

FPGAs,” in Proc. Int. Conf. Neural Inf. Process., Nov. 2002, vol. 2,
pp. 954–959.
[9] A. Celik, M. Stanacevic, and G. Cauwenberghs, “Mixed-signal
real-time adaptive blind source separation,” in Proc. IEEE Int.
Symp. CircuitsSyst., May 2004, vol. 5, pp. V-760–V-763.
[10] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for
independent component analysis,” Neural Comput., vol. 9, pp.
1483–1492, 1997.
[11] N. Shirazi, A. Walters, and P. Athanas, “Quantitative analysis
of floating point arithmetic on FPGA based custom computing
machines,”inProc. IEEE Symp. FPGAs Custom Comput. Mach.,
1995, pp. 155–162.

