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Abstract—Blind source separation of independent source signals 
from their mixtures is a common problem in real world multi- 
sensor applications. Independent component analysis is 
commonly reported for Blind Signal Separation (BSS). 
Independent Component Analysis (ICA) supports the normal 
sampling rate used in automatic speech recognition systems, 
which is incompatible to the systems with high sampling rates. 
So we propose the FastICA algorithm, which is a common 
offline method to identify artifacts and other interferences in the 
mixtures. FastICA becomes efficient for providing real time 
BSS when implemented in a Field Programmable Gate Array 
(FPGA). Added advantage of number precision is increased by 
the introduction of Floating point arithmetic. Increased 
sampling rate is provided by hand coding the FastICA. Using 
HDL language like VHDL facilitates the development of custom 
operators without significantly impacting the operator 
performance. 

 
Index terms--- Blind Source Separation (BSS), Fast Independent 
Component Analysis (FastICA), Field Programmable Gate 
Array (FPGA), Floating point (FP), Hardware Description 
Language (HDL) 

 
I. INTRODUCTION 

Biomedical signals such as electroencephalogram (EEG), magneto 
encephalography (MEG), and electrocardiogram (ECG) are 
generally measured from clinical sensors or instruments; however, 
the measured signals are polluted by the artifacts and other unknown 
noise signals, e.g., eye movements,muscle noise, and power noise 
from instruments[1]. This problem can be solved by independent 
component analysis (ICA) algorithm, which identifies artifacts or 
disturbances and extracts artifacts from the measured signals. The 
processing described previously is also named blind source 
separation (BSS)[2]. The meaning of “blind” is that both the original 
sources and the way the sources were mixed are all unknown, and 
only mixed signals or mixtures can be measured and observed. 
Many studies have been developed on the real time implementation 
of ICA [7]. These studies aimed at implementing ICA on FPGA‟s 
[5] and pilchard boards and even combined it with adaptive noise 
cancellation techniques using adaptive filters [9].Independent 
Component Neural Networks (ICNN) [8] is also implemented in 
FPGA‟s to separate the mixtures. The main drawbacks of these 
existing methods are poor performance due to the low sampling 
rates [3] and lack of pipelined architecture and the result is less 
accurate due to the use of fixed point arithmetic units [10]. 

ICA recovers independent source signals from their mixed 
signals by finding a lineartransformation thatmaximizes the mutual 
independence of mixtures. To improve the efficiency of ICA, 
FastICA algorithm is proposed. FastICA measures non- 

Gaussianityusing kurtosis to find the independent sources from their 
mixtures. In order to realize the real-time signal processing, the 
FastICA algorithm can be implemented on a field-programmable 
gate array (FPGA) to speed up the computation involving vector 
multiplications, matrix multiplications, and matrix inverses. 

In this paper, the hardware FastICA is implemented by 
hand coding HDL code. Though there is software that translates the 
high-level languages such as C code, MATLAB, and even Simulink 
into HDL code, hand coding gives the implementation not only 
better performance but also less consumption of gate array in the 
FPGA. The proposed hardware FastICA implemented by hand 
coding provides high sampling rate up to 192 kHz. In addition, the 
numbers precision in hardware FastICA is increased by 
implementing the hardware floating-point(FP) arithmetic units. The 
FP arithmetic allows numbers to be represented in a wider range 
than fixed-point arithmetic [10], [11]. Finally, the ICA algorithm 
and pipelined architecture-based hardware FastICA is compared in 
this paper by means of simulation. The implementation of the 
algorithms is currently going on and the results will be analyzed 
soon. 

 

II. ICA ALGORITHM 

 

 
 

Fig.1. BSS using ICAalgorithm 

Assume that the mixed signal matrix is defined as 

𝑋 = 𝐴𝑆……………… (1) 
Where 𝑋 = (𝗑1, 𝗑2, … . . 𝗑𝑛)𝑇 and 𝑆 = (𝑠1, 𝑠2, … … 𝑠𝑛)𝑇 are the 
signal arrays, which have n observed mixed signals n and unknown 
independent sources, respectively, and A is a full-rank n by n 
mixing matrix. The goal ofICA algorithm isto recoverthe unknown 
source by estimating the mixingmatrix. Fig. 1is the illustration of 
the ICA processing. x and s are expressed as, 

 
𝗑  =  [𝗑 (1), 𝗑 (2) … 𝗑 (i − 1), 𝗑 (i)] ................. (2) 
𝑠 = [𝑠 (1), 𝑠 (2) … 𝑠 (i − 1), 𝑠 (i)] ...................... (3 

 
Where i=1, 2 …m and m indicates the number of time samples. 
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A) PREPROCESS OF ICA 
In order to reduce the complexity of the ICA algorithm

calculation, it is necessary to preprocess the mixed signal matrix 
A popular preprocessing method is the principal component analysis
(PCA) algorithm, which finds a linear transformation and translates
correlative matrix X into Z. Then, components
uncorrelated to each other. 

The first step of PCA algorithm is called centering, which
calculates the mean from the mixed signal x, and then subtracts the
mean from x. The processing of centering is defined 

𝗑 (i) = 𝗑(i) − 𝐸{𝗑(𝑚)} ...................... (4)
Where i=1, 2, 3…….. m and m indicates the number
samples. After centering, X becomes a zero mean matrix.

The second step of PCA algorithm is called
The method of whitening utilizes eigenvalue decomposition (EVD)
defined as 
𝐸 {𝑋𝑋𝑇} = 𝐶𝗑 = 𝐸𝐷𝐸𝑇 …..………..(5) 
Where Cx is the covariance matrix of X, E=(e1,e
orthogonal matrix of eigenvectors of Cx, and D=diag(λ
λn,) is the diagonal matrix of eigenvalues of  Cx. 

The whitening process can be described as
𝑍 = 𝑃𝑋……………(6) 

Where P is the whitening matrix and Z is a new matrix
will be defined as, 

P = D-1/2*ET ................

It is easy to show that the elements in Z are uncorrelated
whitening process because, 
E {ZZT}=PE {XXT} PT 

1/2ETEDETED-1/2=I ................. (8) 
After preprocessing, the mixing matrix A transforms into a new one.
It can be received from, 
𝑍  =  𝑃𝑋  =  𝑃𝐴𝑆  =  Ã𝑆 .............. (9) 
The new mixing matrix is orthogonal. This means that the ICA
problem of finding the full rank matrix is simplified
estimation of the orthogonal mixing matrix. 

 
III. FAST ICA ALGORITHM 

TheFastICA algorithm uses the preprocessing
centering and whitening. This makes use of an additional process
called Kurtosis.Based on the central limit theorem,
of the sum of independent random variables tends to be closer to a
Gaussian. Thus, measurement of non-Gaussianity is used to find
independent components. Traditional higher order
kurtosis or the named fourth-order cumulant to
Gaussianity. The kurtosis of a zero-mean random
defined by, 
𝐾𝑢𝑟𝑡{𝑦} = 𝐸 {𝑦4} − 3(𝐸 {𝑦2}) 2…………..(10) 
Where E {y4} is the fourth moment of y and E {y
moment of y. for a Gaussian random variable y,
E{y2})2, so that the kurtosis is zero for a Gaussian random variable.
If it is a non-Gaussian random variable, its kurtosis is either positive
or negative. Therefore, non-Gaussianity is measured by the absolute
value of kurtosis. 
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A. IMPLEMENTATION OF FP ARITHMETIC UNITS:

Many scientific problems require FP arithmetic with high
precision in their calculations. Moreover, a large dynamic range of
numbers is necessary for signal processing. FP arithmetic has the
ability to automatically scale numbers and allows numbers to be
represented in a wider range than
proposed 32-bit FP implementation includes adder, subtractor,
multiplier, divider, and square rooter. Fig. 2 has the format of IEEE
745 standard 32-bit FP numbers. In it,s is the sign bit used to specify
the sign of the FP number, is the 8-bit quantity called the exponent
field, and has 23 bits used to store the
FP number. The leading one in the mantissa do
representation; therefore, the leading 
The FP value of Fp is computed by, 

 
𝐹𝑝 = (−1)^5(1. 𝑓) 

Sign Bias exponent fraction
 

Sef
  

1-bits 8-bits 23-
Fig.2.IEEE single precision

 
B. IMPLEMENTATION OF FASTICA
FPGA technology is very suitable to implement the digital signal
processing algorithm for quickly 
hardware. For real-time implementation of the FastICA algorithm, it
requires high volume of mathematical
time interval. Currently, most FPGAs
multipliers and memory blocks,
suchapplication.In this paper, the hardware FastICA is implemented
by hand coding VHSIC hardware description language (VHDL). To
increase the feasibility in the implementation of higher dimensions
of FastICA, the design of implementation
the concept of modules. The 
implementing FastICA is illustrated below:

 
 
 
 

 
S 

 
 

Fig.3. Block diagram of FastICA
 

In order to store quantity of data, the on
FPGA is used when the FastICA
memory is divided into four parts: memory
3, and memory-4. Memory-1 is used to store the measuredmixed
signal X from analog-to-digital circuit module. Memory
centered data. Furthermore, memory
store the whitened data Z and the estimated independent component
S-est, respectively. 

Unknown 
mixing 
matrix 

Unknown 
source 
signal 

ISSN 2455-0140 

O/ 

ARITHMETIC UNITS: 
Many scientific problems require FP arithmetic with high 

precision in their calculations. Moreover, a large dynamic range of 
numbers is necessary for signal processing. FP arithmetic has the 

cale numbers and allows numbers to be 
than fixed-point arithmetic. The 

bit FP implementation includes adder, subtractor, 
multiplier, divider, and square rooter. Fig. 2 has the format of IEEE 

bit FP numbers. In it,s is the sign bit used to specify 
bit quantity called the exponent 
the binary representation of the 

FP number. The leading one in the mantissa does not appear in the 
 one is implicit. 

 * 2^(𝑒 − 127) 
fraction 

-bits 
precision FP format 

FASTICA ALGORITHMS: 
FPGA technology is very suitable to implement the digital signal 

 verifying the algorithm in 
time implementation of the FastICA algorithm, it 

mathematical operations in a very short 
FPGAs have on-chip hardware 

blocks, andare suitable for 
suchapplication.In this paper, the hardware FastICA is implemented 
by hand coding VHSIC hardware description language (VHDL). To 
increase the feasibility in the implementation of higher dimensions 

implementation of FastICA is based on 
 general Block diagram for 

below: 

FastICA implementation 

In order to store quantity of data, the on-chip memory in 
FastICA algorithm is processed. The 

memory is divided into four parts: memory-1, memory-2, memory- 
1 is used to store the measuredmixed 

digital circuit module. Memory-2 stores the 
centered data. Furthermore, memory-3 and memory-4 are used to 

and the estimated independent component 

X 
FastICA 
algorith 
m p 

FP arithmetic 



International Journal of Scientific Research and Innovation ISSN 2455-0140 
Volume 1, Issue 1, July 2015 IJSRI 1007 

 

 

Four blocks are needed to implement FastICA: centering, 
whitening, kurtosis, and FastICA controller. The detailed 
implementation of each block will be discussed as follows: 
.1) Centering:The process of centering is to subtract the mixed 
signal means µ1 and µ2 from x1 and x2, respectively. 
First, the mixed signals x1 and x2 will be read out from the memory- 
1_A and memory-1_B, respectively, and then it will accumulate the 
element of x one by one. After getting the summation of, will be 
obtained by dividing the summation by 3000. In order to speed up 
the processing, use multiplication operation (multiply by 1/3000) 
instead of the division, where 3000 is the number of time samples. 
Second, subtract the mean from the data in memory-1 forachieving 
centering and then save the results into memory-2. 
2) Whitening:The first step of whitening is to find the whitening 
matrix P, given by D-1/2*ET, where 𝐸 = (𝑒1, 𝑒2, … … 𝑒𝑛) is the 
orthogonal matrix of eigenvectors of Cx, and 
𝐷 = 𝑑i𝑎𝑔( 1, 2, 3, … … … . . 𝑛, ) is the diagonal matrix of 
eigenvalues of Cx. Covariance matrix, 𝐶𝗑 = 𝐸{𝑋𝑋𝑇} is a 2 x2 
matrix. It takes three multipliers to implement the calculation of 
XXT. Multiplier-1 is used for x1 * x1, multiplier-2 is used for x1 * x2, 
and multiplier-3 is used for x1 * x2, where, 

transformation are all implemented. The matrix P is thus obtained 
by multiplying D-1/2 by ET. Finally, the white data could be obtained 
after multiplyingby P by X.. Then it is stored into memory-3. The 
block diagram of whitening is presented in Fig. 4. 

 
3) Kurtosis:The calculation of separating vector in the following 
equation has been already described in the previous section and it is 
expressed as, 
w (𝑘) = 𝐸 {𝑍 (𝑍𝑇w (𝑘 − 1))3} − 3w (𝑘 − 1)……(13) 

The calculation of𝑍 (𝑍𝑇w (𝑘 − 1)) 3 is first implemented 
and the corresponding concept is presented in Fig. 5, where 
Memory-3_A and memory-3_B store the white data z1and z2 
respectively. The parallel hardware in Fig. 5 must perform 3000 
times and the operation is controlled by input “pre_w(k) Cal. 
Control.” The hardware operation could be formulated as, 

 
𝑃𝑟𝑒_w (𝑘) = ∑ (z(j) * (z(j)w(𝑘 − 1))3) … (14) 
Where 𝑃𝑟𝑒_w (𝑘)iscalculation result of Z(ZTw (k-1)) 3. 

To save the logic element of FPGA, sequence hardware 
design is adopted. The remaining calculations will sequentially 

(X) = 𝑥1 𝑥1(1), 𝑥1(2) ⋯ 𝑥1(3000) share the FP arithmetic components until the calculation of is 
= ( 

(  )
 ) finished. 

𝑥2 𝑥2 1 , 𝑥2(2) ⋯ 𝑥2(3000) 
Because x1 * x2 equals x2 * x1, it only needs to implement one of 
them in order to save the hardwareresources. The method described 
previously is a parallel operation. In other words, it performs three 
multiplications at the same time after reading two words out of data 
x1 and x2 and from memory-2_A and memory- 2_B, respectively. 
After 3000 accumulation and parallel multiplication operations, Cx 
thus can be derived by multiplying summation by 1/3000. The 
hardware operation described previously can be formulated as, 

 

𝐶𝑥 = (
𝐶𝑥00 𝐶𝑥01

)
 

𝐶𝑥10 𝐶𝑥11 

𝐶𝗑 − 00  =  (∑𝗑1 (j)  * 𝗑1(j)) *  0. 00033            (10) 
 

𝐶𝗑 − 01 = 𝐶𝗑 − 10 = (∑𝗑1(j) * 𝗑2(j)) 

* 0. 000333 …………… (11) 
 

𝐶𝗑 − 11 =  (∑𝗑2 (j)  *  𝗑2(j))  *  0. 00033 ............ (12) 
 

Each centering result will be saved into memory-2 and 
will be used for calculating simultaneously. The implementation 
block diagram is presented in fig.3. When the calculation of Cx has 
been carried out, the next step is to calculate the eigenvalues λ1 and 
λ2 of Cxby the equation aλ2 + bλ + c = 0. First, it simultaneously 
utilizesan adder to calculate the parameter b = -(C00 + C11) and two 
multipliers associated with a subtractor to calculate the parameter 
c=det(Cx). The solutions λ1 and λ2 are both positive because Cx is a 
positive semi-definite. Practically, is positive definite for almost all 
natural data. Because the value of „a‟ equals unity, the operation of 
just utilizes left shifting operation on the c. Using a square rooter 
and a matrix inverse circuit, we can calculate D-1/2 easily. The 
algorithms for finding eigenvectors of ET, normalization, and matrix 

4) FastICA Controller:The works of FastICA controller are as 
follows. 1) Drive centering, whitening, and kurtosis blocks to be 
sequentially active, and control the memory-access cycle when each 
FastICA block requires accessing the data from memory. 2) When 
processing kurtosis block, FastICA controller will setup the initial 
value w (0), and then it compares the kurtosis result w (k) with w (k- 
1) for judging whether the “fixed-point iteration” in FastICA 
algorithm has converged. 

 
Fig.4. Block diagram implementation of centering and whitening. 
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Fig.5. Block diagram implementation of the equation :(∑𝑍(j) * 
( 𝑍(j))𝑤(𝑘 − 1))3) 

 
 

Fig.6.Illustration of proposed pipeline flow of pipelined FastICA 
 

C. IMPLEMENTATION OF PIPELINED FASTICA 
ARCHITECTURE 
This requires two sub blocks as explained below. 
1) Overall Pipelined FastICA:In order to implement the pipeline 
architecture, the signal processing flow is divided into three sub 
blocks: analog-to-digital converter (ADC) control, FastICA 
calculation, and digital-to-analog converter (DAC) control. Besides 
three sub blocks, pipeline controller is needed to control the 
processing sequence of each sub block in pipeline architecture. The 
overall concept of pipelined FastICA is illustrated in Fig. 5. The 
process starts at processing cycle 1: 

After first two cycles of processing, three sub-blocks will 
operate simultaneously in the same processing cycle. The estimated 
independent analog components output continuously after 
processing cycle 3. Utilizing the pipeline architecture, the 
implementation of FastICA achieves real-time continuous signal 
processing. 

 
2) ADC and DAC Control Sub-blocks:The main concern is when 

the pipeline processing is the memory-accessing conflict problem. 
As shown in Fig. 5, at processing cycle 2, FastICA processing sub- 
block reads the data-1 out from memory-1 for processing, however, 
at the same time, ADC control sub-block has to store the sampling 

data, data-2, into memory-1. The same conflict happens at 
processing cycle 3. When FastICA sub-block saves the calculated 
results into memory-4, the DAC control sub-block has to read out 
the data from memory-4 for DAC operation in the same processing 
cycle. Therefore, memory-1 pair and memory-4 pair are proposed to 
avoid the memory conflict problem. 

 
V. EXPERIMENTAL RESULTS: 

 
In the simulation, sine and triangle waves generated from 

MATLAB are taken as source signals. Then, the mixed signals are 
produced by multiplying the random mixing matrix and the 
generated source signals. This mixing signal is pre-processed and 
the further processes are done using hand coding VHDL and the 
independent source signal is obtained at the output. The simulation 
results are illustrated below: Fig.6.indicates the mixed signal 
generated using MATLAB. Fig.7. represents the pre-processed 
signal that is further processed using PCA. Fig.8. indicates the 
obtained independent signal using hand coding VHDL. 

 
 
 

 
Fig.6. Generated mixed signal 
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Fig.7. Pre-processed signal 
 
 

Fig.8. Processed signal using hand coding 
 

The implementation will be done further and the results 
will be analyzed and comparative evaluation will be done with ICA. 

 
 

VI. CONCLUSION: 
This paper compares the performance of the ICA 

algorithm and the FastICA algorithm for real time implemented in 
FPGA. The FastICA algorithm proves the real time implementation 
of Blind Source Separation more feasible. ICA makes use of 12 
KHz sampling with 12-bit A/D conversion, commonly used in 
automatic speech recognition system. With higher sampling rates, 
ICA require more computing power and memory bandwidth with 
given convolutive mixing channels, whereas the FastICA pipelined 
architecture allows high speed real time signal processing of 
FastICA with high sampling rate of up to 192 KHz by hand coding 
it in VHDL. Moreover , the FP arithmetic is implemented in the 
pipelined FPGA based FastICA to provide better precision and high 
dynamic performance. In future, the prototype system with FastICA 
algorithm could work without the need of a personal computer. Both 
simulation and experiment demonstrate that the proposed FPGA 
based FastICA system is capable of real-time signal processing such 
as speech signal enhancement and fetal heart rate (FHR) monitoring. 
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